References
Lara, Carlos Sanchez. “Design and Performance Analysis Study of an Ion Thruster.” Upcommons, upcommons.upc.edu/bitstream/handle/2117/103042/REPORT_255.pdf. Accessed 19 Mar. 2024.
Imran, Mohammed. “Introduction to Aerospike and Its Aerodynamic Features.” Science Direct, www.ijsrp.org/research-paper-0516/ijsrp-p5314.pdf. Accessed 19 Mar. 2024.
Bennewitz, John W., et al. “Experimental Validation of Rotating Detonation for Rocket Propulsion.” Nature News, Nature Publishing Group, 30 Aug. 2023, www.nature.com/articles/s41598-023-40156-y.
Author links open overlay panelDetlef Manski, et al. “Optimization of Dual-Expander Rocket Engines in Single-Stage-to-Orbit Vehicles.” Acta Astronautica, Pergamon, 31 Mar. 1999, www.sciencedirect.com/science/article/pii/S0094576597001197.
Choueiri, Edgar Y. A Critical History of Electric Propulsion: The First Fifty Years ..., mae.princeton.edu/sites/default/files/ChoueiriHistJPC04.pdf. Accessed 19 Mar. 2024.
Xiaodong Yu a, et al. “3D Printed Different Polymer Fuel Grains for Hybrid Rocket Engine.” FirePhysChem, Elsevier, 14 Oct. 2023, www.sciencedirect.com/science/article/pii/S2667134423000512.
Santoro, Robert J, and Sibtosh P al. Experimental Studies of the Heat Transfer to RBCC
Rocket Nozzles for CFD Application to Design Methodologies, NASA, Feb. 1999, ntrs.nasa.
gov/api/citations/19990025912/downloads/19990025912.pdf.
Blomquist, N., Alimadadi, M., Hummelg ̊ard, M., Dahlstr ̈om, C., Olsen, M., & Olin, H. (2019).
Effects of geometry on large-scale tube-shear exfoliation of graphite to multilayer graphene
and nanographite in water. Scientific reports, 9(1), 8966. https://doi.org/10.1038/s41598-0
19-45133-y.
Junjie Lv, Yushan Gao, Ping Jin, Yaqun Qi, Bingyang Liu, Ruizhi Li, Guobiao Cai, A
simplified one-dimensional transient heat transfer model for rocket thrust chamber, Applied
Thermal Engineering, Volume 218, 2023, 119379, ISSN 1359-4311, https://doi.org/10.1016/
j.applthermaleng.2022.119379.
Powell, Adam. “Finite Difference Solution of the Heat Equation.” Finite Difference Solution
of the Heat Equation, Massachusetts Institute of Technology, 13 Mar. 2002, dspace.mit.edu
/bitstream/handle/1721.1/35256/22-00JSpring-2002/NR/rdonlyres/Nuclear-Engineering/2
2-00JIntroduction-to-Modeling-and-SimulationSpring2002/55114EA2-9B81-4FD8-90D5-5
F64F21D23D0/0/lecture 16.pdf.
Recktenwald, Gerald. FTCS Solution to the Heat Equation, Portland State University De-
partment of Mechanical Engineering, web.cecs.pdx.edu/∼gerry/class/ME448/notes/1Dmod
els/pdf/FTCS slides.pdf.Accessed10Oct.2023.
Arena, Zach, et al. Hybrid Rocket Motor California Polytechnic State University.
Fernandez, Margaret. “Propellant Tank Pressurization Modeling for a Hybrid Rocket.” The-
ses, Jan. 2009, https://scholarworks.rit.edu/theses/7111.
Gieras, Marian, and Aleksander Gorgeri. “Numerical Modelling of the Hybrid Rocket Engine
Performance.” Propulsion and Power Research, vol. 10, no. 1, Mar. 2021, pp. 15–22.
ScienceDirect, https://doi.org/10.1016/j.jppr.2021.03.001.
Kumar, Rajiv, and Ramakrishna Periyapatna. “Measurement of Regression Rate in Hybrid
Rocket Using Combustion Chamber Pressure.” Acta Astronautica, vol. 103, Oct. 2014, pp.
226–34. ResearchGate, https://doi.org/10.1016/j.actaastro.2014.06.044.
Numerical Modeling and Test Data Comparison of Propulsion Test Article Helium Pressur-
ization System. https://doi.org/10.2514/6.2000-3719. Accessed 29 Sept. 2023.
Predoi, S ̧tefan, et al. “The Regression Rate-Based Preliminary Engineering Design of Hybrid
Rocket Combustion System.” Processes, vol. 10, no. 4, 4, Apr. 2022, p. 775. https:
//doi.org/10.3390/pr10040775.
Richard Nakka’s Experimental Rocketry Site. http://www.nakka-rocketry.net/index.html.
Accessed 10 Oct. 2023.
Waxman, Benjamin S., ”AN INVESTIGATION OF INJECTORS FOR USE WITH HIGH
VAPOR PRESSURE PROPELLANTS WITH APPLICATIONS TO HYBRID ROCKETS”.
Standford University, 2014.
LIV
14. Zilliac, Greg, and Mustafa Karabeyoglu. “Modeling of Propellant Tank Pressurization.”
41st AIAA / ASME / SAE / ASEE Joint Propulsion Conference & Exhibit, American
Institute of Aeronautics and Astronautics, 2005. DOI.org (Crossref), https://doi.org/10.251
4/6.2005-3549.
15. Zimmerman, Jonah E., et al. “Review and Evaluation of Models for Self-Pressurizing Propel-
lant Tank Dynamics.” 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Ameri-
can Institute of Aeronautics and Astronautics, 2013. DOI.org (Crossref), https://doi.org/10
.2514/6.2013-4045.
16. Sutton, George Paul, and Oscar Biblarz. Rocket Propulsion Elements. 9th ed., Wiley, 2017.
17. Jagmit Singh, Luis E. Zerpa, Benjamin Partington, Jose Gamboa, Effect of nozzle geometry
on critical-subcritical flow transitions, Heliyon, Volume 5, Issue 2, 2019, e01273, ISSN 2405-
8440, https://doi.org/10.1016/j.heliyon.2019.e01273
18. Gheorghe, D., and Stefan, G., Comparative analysis regarding burning process for different
fuels in hybrid rocket engines Comparative Analysis Regarding Burning Process for Different
Fuels in Hybrid Rocket Engines Available: https://www.researchgate.net/publication/33792
8377 Comparative analysis regarding burning process for different fuels in hybrid rocket e
ngines Comparative Analysis Regarding Burning Process for Different Fuels in Hybrid R
ocket Engines.
19. Hui Tian, Xiangyu Meng, Hao Zhu, Chengen Li, Lingfei He, and Guobiao Cai, Dynamic
Numerical Simulation of Hybrid Rocket Motor with HTPB-Based Fuel with 58% Aluminum
Additives